

Department of Applied Mathematics, VŠB – Technical University Ostrava

DECOMPOSING COMPLETE GRAPHS INTO SMALL ROSY GRAPHS

Dalibor Fronček

In 1967 A. Rosa introduced some important types of vertex labelings as useful tools for decompositions of complete graphs K_{2n+1} into graphs with n edges. A labeling of a graph G with n edges is an injection ρ from the vertex set of G, V(G), into a subset S of the set $\{0, 1, 2, \ldots, 2n\}$ of elements of the additive group Z_{2n+1} . The length of an edge xy is defined as $\ell(x,y) = \min\{\rho(x) - \rho(y), \rho(y) - \rho(x)\}$. Notice that the subtraction is performed in Z_{2n+1} and hence both differences are positive. If the set of all lengths of the n edges is equal to $\{1, 2, \ldots, n\}$ and $S \subseteq \{0, 1, \ldots, 2n\}$, then ρ is a rosy labeling (called originally ρ -labeling by AR); if $S \subseteq \{0, 1, \ldots, n\}$ instead, then ρ is a graceful labeling (called β -labeling by AR). A graceful labeling ρ is said to be an α -labeling if there exists a number ρ_0 with the property that for every edge $xy \in G$ with $\rho(x) < \rho(y)$ it holds that $\rho(x) \le \rho_0 < \rho(y)$. Obviously, G must be bipartite to allow an α -labeling.

A. Rosa proved that if a graph G with n edges has a rosy (or graceful) labeling, then the complete graph K_{2n+1} can by cyclically decomposed into copies of G. He also showed that if a bipartite graph G with n edges has an α -labeling, then for any positive integer m the complete graph K_{2nm+1} can by cyclically decomposed into copies of G.

We will observe that if a bipartite graph G decomposes K_n and K_m , then it also decomposes K_{nm} . Using this observation, we show that every bipartite graph G with n edges and a rosy labeling decomposes $K_{(2n+1)^k}$ for any positive integer k.