

Department of Applied Mathematics, VŠB - Technical University Ostrava

CHOOSABILITY OF COMPLETE MULTIPARTITE GRAPHS

Tomáš Vetrík

A list assignment to the vertices of a graph G is the assignment of a list L(v) of colors C to every vertex v of G. A k-list assignment is a list assignment such that $|L(v)| \geq k$ for every vertex v. A proper L-coloring of G is a function $f: V(G) \to C$ such that $f(v) \in L(v)$ for all $v \in V(G)$ and $f(u) \neq f(v)$ for every $uv \in E(G)$. If for every k-list assignment L, there exists an L-coloring, then G is k-choosable. The choice number ch(G) is the smallest number k such that G is k-choosable.

We focus on choosability of complete multipartite graphs. Let $K_{n_1,n_2,...,n_r}$ be the complete multipartite graph with r partite sets of order $n_1, n_2, ..., n_r$. Our main result shows that a complete r-partite graph G consisting of one partite set of order (t+2)(t+3)/2 and r-1 partite sets of order two is (r+t)-choosable. We also present results on upper and lower bounds for choice number of complete multipartite graphs with partite sets of equal sizes.

e-mail: csgt2007@vsb.cz web: http://graphs.vsb.cz/grafy2007