

Department of Applied Mathematics, VŠB – Technical University Ostrava

SQUARE OF METRICALLY REGULAR GRAPHS

VLADIMÍR VETCHÝ

Let X be a finite set, $n := |X| \ge 2$. For an arbitrary natural number D let $\mathbf{R} = \{R_0, R_1, \dots, R_D\}$ be a system of binary relations on X. A pair (X, \mathbf{R}) will be called an association scheme with n classes if and only if it satisfies the axioms A1 - A4:

- A1. The system **R** forms a partition of the set X^2 and R_0 is the diagonal relation, i.e. $R_0 = \{(x, x); x \in X\}$.
- A2. For each $i \in \{0, 1, \dots, D\}$ it holds $R_i^{-1} \in \mathbf{R}$.
- A3. For each $i, j, k \in \{0, 1, ..., D\}$ it holds $(x, y) \in R_k \wedge (x_1, y_1) \in R_k \Rightarrow p_{ij}(x, y) = p_{ij}(x_1, y_1)$, where $p_{ij}(x, y) = |\{z; (x, z) \in R_i \wedge (z, y) \in R_j\}|$. Then define $p_{ij}^k := p_{ij}(x, y)$ where $(x, y) \in R_k$.
- A4. For each $i, j, k \in \{0, 1, \dots, D\}$ it holds $p_{ij}^k = p_{ji}^k$.

The set X will be called the *carrier* of the association scheme (X, \mathbf{R}) . Especially, $p_{i0}^k = \delta_{ik}$, $p_{ij}^0 = v_i \delta_{ij}$, where δ_{ij} is the Kronecker-Symbol and $v_i := p_{ii}^0$, and define $P_j := (p_{ij}^k)$, $0 \le i, j, k \le D$.

Given an undirected graph G = (X, E) of diameter D we may now define $R_k = \{(x, y); d(x, y) = k\}$, where d(x, y) is the distance from the vertex x to the vertex y in the standard graph metric. If (X, \mathbf{R}) gives rise to an association scheme, the graph G is called metrically regular (sometimes also called distance regular) and p_{ij}^k are said to be its parameters. In particular, a metrically regular graph with diameter D = 2 is called strongly regular.

Let G = (X, E) be an undirected graph without loops and multiple edges. The second power (or square of G) is the graph $G^2 = (X, E')$ with the same vertex set X and in which mutually different vertices are adjacent if and only if there is at least one path of the length 1 or 2 in G between them.

The necessary conditions for G to have the square G^2 metrically regular are found and some constructions of those graphs are solved.