

CSGT 2024, June 3-7 2024, Trojanovice
59th Czech-Slovak Conference on Graph Theory 2024
Department of Applied Mathematics
VŠB - Technical University Ostrava, 17. listopadu 2172/15, Ostrava-Poruba

SEMI-MAGIC SQUARES OVER DIHEDRAL GROUPS

Dalibor Fronček

Magic squares are among oldest known combinatorial objects, dating back to the 4 -th century BC. A magic square of side $n, M S(n)$, is an $n \times n$ array with entries $1,2, \ldots, n^{2}$, each appearing exactly once, such that every row, column, and the main forward and backward diagonals have the same sum $m=n\left(n^{2}+1\right) / 2$, called the magic constant. A semi-magic square only requires the row and column sums to be equal.
Last year in Bardejovské Kúpele I presented results on dihedral supermagic labelings of some 4-regular graphs and observed that the results can be rather easily extended in certain classes of $4 k$-regular graphs. Of the remaining regularities, the odd ones seem to be difficult, so I looked into ($4 k+2$)-regular graphs (with no success so far).
Since supermagic labelings of regular complete bipartite graphs are equivalent to semi-magic squares, I got soon attracted by constructions of dihedral semimagic squares $S M S_{D_{k}}(n)$, where the entries are elements of D_{k} rather than integers. Obviously, for odd n such squares do not exist because D_{k} is of order $2 k$.
Not too surprisingly I was able to find such rectangles of side $n \equiv 0(\bmod 4)$, but not $n \equiv 2(\bmod 4)$. I will present some constructions of $S M S_{D_{k}}(n)$ where $n \equiv 0(\bmod 4)$ and $n^{2}=2 k$.

