

\mathcal{H} -CLIQUE-WIDTH

Petr Hliněný, Jan Jedelský*

We generalize clique-width by defining \mathcal{H} -clique-width. We discuss its basic properties, its relation to planar product structure, and first-order transductions thereof.

We say that H is a *loop graph* if the vertex set of H is finite and H has no parallel edges. Let $H \in \mathcal{H}$ be a loop graph, and let $k \in \mathbb{N}$ be natural number. We say that ϕ is an (H, k)-expressing if ϕ uses the following operations to produces a graph $G = \phi()$ where every vertex $v \in V(G)$ is assigned a color $c_v \in [k]$ and a parameter vertex $p_v \in V(H)$:

- create_vertex(c, p), creating a single vertex graph whose unique vertex has color $c \in [k]$ and parameter vertex $p \in V(H)$;
- disjoint_union(ψ_1, ψ_2), creating a disjoint union of graphs $G_1 = \psi_1()$ and $G_2 = \psi_2()$
- add_edges($\psi_1, c_1 \neq c_2$), adding edges between all pairs of vertices u, v of $G_1 = \psi_1()$ satisfying all of the following conditions:
 - color of u is c_1
 - color of v is c_2
 - parameter vertices p_u of u and p_v of v are adjacent in H.
- recolor($\psi_1, c_1 \neq c_2$), recoloring all vertices of $G_1 = \psi_1()$ whose color is c_1 to c_2 (without changing their parameter vertices).

Let \mathcal{H} be a class of loop graphs. We say that a simple graph G has \mathcal{H} -cliquewidth at most k if there exists a loop graph $H \in \mathcal{H}$ and (H, k)-expression ϕ such that $G = \phi()$.