

GENERALIZED LABELLINGS OF CIRCULANT GRAPHS

Přemysl Holub, Martin Kopřiva*

By an L(3, 2, 1)-labelling of a graph G we mean an assignment of non-negative integers to vertices G according to the following rules: adjacent vertices are labelled by values differing by at least 3, vertices at distance two apart are labelled by values differing by at least 2 and vertices at distance three are labelled by values differing by at least 1. It is natural to ask for the smallest positive integer, denoted by $\lambda_{(3,2,1)}(G)$, such that G admits an L(3,2,1)-labelling with span $\lambda_{(3,2,1)}(G)$, specifically with values $0, \ldots, \lambda_{(3,2,1)}(G)$.

Let $S \subset [n-1]$, where $n \in \mathbb{N}$, $n \geq 3$, such that if $x \in S$, then also $(n-x) \in S$. A graph G = (V(G), E(G)), where $V(G) = \{u_1, \ldots, u_n\}$ and $E(G) = \{u_i u_j; |u_j - u_i| \in S, i, j \in \{1, \ldots, n\}\}$, is a *circulant* $C_n(S)$ generated by the set S.

In this talk we investigate L(3, 2, 1)-labelling of some circulant graphs. We consider two types of circulants: dense $(|S| \ge \frac{n}{2})$ and sparse (|S| = 3 or |S| = 4). We establish some exact values and bounds for $\lambda_{(3,2,1)}(G)$ for these circulants.