

CSGT 2024, June 3-7 2024, Trojanovice
59th Czech-Slovak Conference on Graph Theory 2024
Department of Applied Mathematics
VŠB - Technical University Ostrava, 17. listopadu 2172/15, Ostrava-Poruba

CONFLICT-FREE COLORING OF PLANAR GRAPHS

LUKÁŠ MÁLIK

A conflict-free coloring of a graph is a coloring of vertices such that for every vertex there is a color that appears exactly once in its (open/closed) neighborhood. The smallest number of colors required to color a graph G in such a way is called the conflict-free chromatic number of G, denoted by $\chi_{C F C_{c}}(G)$ for closed neighborhood and $\chi_{C F C_{o}}(G)$ for open neighborhood. For a class of graphs \mathcal{C} we define $\chi_{C F C}(\mathcal{C})=\max \left\{\chi_{C F C}(G) \mid G \in \mathcal{C}\right\}$. Motivated by the frequency assignment problem, this type of coloring was first introduced in a geometric setting by Even et al. in 2003.
It has been shown by Z . Abel et al. that for the class of planar graphs \mathcal{P}, the following holds: $3 \leq \chi_{C F C_{c}}(\mathcal{P}) \leq 4$. In this talk, we will present an improved lower bound achieving $\chi_{\mathrm{CFC}_{c}}(\mathcal{P})=4$. Then we show a new way of looking at problems concerning mainly conflict-free coloring with respect to the open neighborhood and mention its relation to result by F. Huang et al. which proves that $\chi_{C F C_{o}}(\mathcal{P}) \leq 5$.
G. Even, Z. Lotker, D. Ron, and S. Smorodinsky. Conflict-Free Colorings of Simple Geometric Regions with Applications to Frequency Assignment in Cellular Networks. SIAM J. Comput., 33(1):94-136, jan 2003.
Z. Abel, V. Alvarez, E. D. Demaine, S. P. Fekete, A. Gour, A. Hesterberg, P. Keldenich, and C. Scheffer. Conflict-Free Coloring of Graphs. SIAM J. Discrete Math., 32(4):2675-2702, 2018.
F. Huang, S. Guo, and J. Yuan. A Short Note on Open-Neighborhood ConflictFree Colorings of Graphs. SIAM J. Discrete Math., 34(3):2009-2015, 2020.

