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RANKING NUMBERS OF PLATONIC SOLIDS

ERrRIK BRUOTH*, MIRKO HORNAK

A k-ranking of a graph G is a colouring ¢ : V(G) — {1, ..., k} such
that any path in G with endvertices z, y fulfilling ¢(x) = ¢(y) con-
tains an internal vertex z with ¢(z) > ¢(z)(off-line version).Off-
line ranking x,(G) number of a graph G is a minimum & such that
G has a k-ranking. On-line ranking number x}(G) of a graph G is
a minimum k such that G has a k-ranking constructed step by step
if vertices of G are coming and coloured one by one in an arbitrary
order; when colouring a vertex, only edges between already pre-
sent vertices are known. Here we present off-line ranking numbers
for all Platonic solids and also on-line ranking numbers except for
the dodecahedron.

LIST DISTANCE-LABELINGS OF GRAPHS

JIkf FIALA*, RISTE SKREKOVSKI

In this paper, we study the distance choosability — the list coun-
terpart of the distance constrained labelings, a notion stemming
from channel assignment.

The task is to label vertices of a given graph by integers, such
that

1. the label of a vertex belongs to a set prespecified for the
vertex (list), and also

2. vertices at graph distance at most i should have been as-
signed integers that differ by at least p;, where p; is a fixed pa-
rameter of the problem. (Such sequence of parameters is called
distance constraints.)

We first show that the Alon-Tarsi theorem for choosability in
graphs has an analogous version for the choosability of distance
constrained labelings. The existance of such labeling will be gi-
ven in terms of the number of odd and even Eulerian subgraph.
Then we apply this result to paths and cycles for the distance
constrained labeling with two parameters (p1, p2) = (2,1).



ERDOS’S CONJECTURE ON MULTICIPLITIES
OF COMPLETE SUBGRAPHS

FRANTISEK FRANEK

In 1962 Paul Erdos in On the number of complete subgraphs con-
tained in certain graphs conjectured that the proportion of mo-
nochromaitic ¢-cliques in complete graphs coloured by two colours

tends to 21~(). The conjecture is related to Ramsey’s theorem
t
and in more precise terms states that lim c¢;(n) = 21_(2), where
n—oo

ci(n) = min{c,(Q) : G graph of order n}, ¢:(G) = ’“(G()%’“G,

t
k:(G) denotes the numbere of t-cliques in graph G, and G denotes
a complement of graph G. The conjecture holds true for ¢t = 3 (Go-
odman) and can easily be shown true for pseudorandom graphs -
”graphs that behave like random graphs”. To some surprise the
conjecture was proven false by A. Thomason in 1989 who showed
that the limit was less than expected. In 1992 Franek and Rodl
showed that the conjecture was true for nearly pseudorandmom
graphs (graphs obtained from pseudorandom by small perturbe-
rations) and in a sense is thus ”locally true”. Later Franek and
Rodl improved on some of the upper bounds using computatio-
nal techniques and generated many counter-examples to the con-
jecture with wide range of properties. Interestingly enough, some
of the counter-examples defy the common belief that the way to
minimize the proportion of monochromatic cliques is to have them
distributed as evenly as possible (which, for instance, is the case
for pseudorandom graphs).

The talk presents the background of the problem and focuses
in some details on the nearly pseudorandom graphs and the tech-
niques to prove the conjecture true for them. In the second part
of the talk the computational techniques for improving the up-
per bounds are presented and discussed and some recent results
are shown. The talk concludes with showing the limitations of the
computational techniques and their inability to improve the upper
bounds any further.



DECOMPOSITIONS OF COMPLETE GRAPHS
OF EVEN ORDER INTO
ISOMORPHIC SPANNING TREES

DALIBOR FRONCEK*, MICHAEL KUBESA

Graph factorizations, most often these of complete graphs, have
been extensively studied by many authors. It is not surprising that
factorizations into isomorphic factors received special attention
over the years. There are many results on factorizations of com-
plete graphs into isomorphic trees of smaller order. Surprisingly
enough, almost nothing has been published on factorizations into
isomorphic spanning trees. A simple arithmetic condition shows
that only complete graphs with an even number of vertices can be
factorized into spanning trees. It is a well known fact that each
such graph Kj,, can be factorized into hamiltonian paths P,,. On
the other hand, it is easy to observe that each K, can be also
factorized into double stars; that is, two stars K; ,—1 joined by
an edge. But what about trees between these two extremal cases?
While methods of such decompositions into symmetric trees have
been known, we develop a more general method based on new ty-
pes of vertex labelling, flexible q-labelling and blended p-labelling.
This labellings are generalizations of labellings introduced by Rosa
and Eldergill. We present several classes of trees that allow facto-
rization of complete graphs with an even number of vertices.

Supported by University of Minnesota Duluth grant 177-1009



NON-REPETITIVE COLORINGS OF GRAPHS
JAROSEAW GRYTCZUK*, MARIUSZ HALUSZCZAK

A sequence a = ajas...a, is said to be non-repetitive if no two ad-
jacent blocks of a are exactly the same. For instance the sequence
1232321 contains a repetition 2323, while 123132123213 is non-
repetitive. A theorem of Thue asserts that, using only three sym-
bols, one can produce arbitrarily long non-repetitive sequences.

We consider a natural generalization of Thue’s sequences for
colorings of graphs. A coloring of the set of edges of a given graph
G is non-repetitive if the sequence of colors on any path in G is
non-repetitive. We call the minimal number of colors needed for
such a coloring the Thue number of G and denote it by 7(G).

The main problem is the relation between the numbers 7(QG)
and A(G). In a joint paper with Noga Alon and Oliver Riordan
we show, using the probabilistic method, that 7(G) < cA(G)?
for some absolute constant ¢. However, for certain special classes
of graphs linear upper bounds on 7(G) are possible by explicit
colorings. For instance, the Thue number of the complete graph
K, is at most 2n — 3, and 7(T") < 4(A(T) —1) for any tree T with
at least two edges. A lot of challenging problems that arose are
still left open.



ON INTEGRAL TREES OF THE LARGE ORDER
PAVEL Hic*, MILAN POKORNY

A graph G is called integral if all the zeros of the characteristic
polynomial P(G;x) are integers. The first studies of integral graphs
were made by Harary and Schwenk [3]. So far, there are many
results on some particular classes of integral graphs, for instance:
cubic graphs [2]; trees [4, 6, 7]; graphs with maximum degree 4 [1].
In general, the problem of characterizing of integral graphs seems
to be difficult.

A tree T is called balanced if all the vertices at the same
distance from the centre of T have the same degree. The inves-
tigation of balanced integral trees has been made in [4]. There
are many unanswered questions related with this problem. For
instance, all the balanced integral trees constructed so far have
diameter at most 8, but there is none of diameter 9 (see [4]).

We investigate the problem of existence of balanced integral
trees of diameter 10. We have already proved that the problem of
characterizing integral trees of diameter 3 (nonbalanced) is equi-
valent with the problem of solving Pell‘s diophantine equations
(see also [3]).

AMS Subject Classification (1991): Primary 05C50.
Key words: integral tree, characteristic polynomial.

Research partially supported by VEGA grant 1/7152/20
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BRANCH-DECOMPOSITIONS AND THE TUTTE
POLYNOMIAL OF REPRESENTABLE MATROIDS

PETR HLINENY

It is a classical result of Jaeger, Vertigan and Welsh that evalua-
ting the Tutte polynomial of a graph is #P-hard in all but few
special points. On the other hand, several papers in past years
have shown that the Tutte polynomial of a graph can be effici-
ently computed using a bounded-width tree-decomposition. We
present a recursive formula computing the Tutte polynomial of a
matroid M represented over a finite field (which includes all gra-
phic matroids) using the parse tree of a bounded-width branch-
decomposition of M. This formula provides, given such a parse
tree, an algorithm computing the Tutte polynomial of M in poly-
nomial time with a fixed exponent.



DISTANCE LOCAL CONNECTIVITY AND
HAMILTONIAN INDEX

PREMYSL HoLuB*, L. X1IONG

A graph G is said to be (-distance-locally connected if, for every
vertex ¢ € V(G), the set of vertices at distance at most £ from
z induces a connected graph. Clearly, every 2-connected graph is
{-distance-locally connected for some integer 4.

We prove sufficient conditions of Chvatal-Erdss and of Dirac
type for distance local connectivity, and we obtain upper bounds
for the hamiltonian index of a graph in terms of its distance local
connectivity.

Finally, we show that every Nj-locally connected graph has
a dominating closed trail, and hence its hamiltonian index is at
most 1.

ON THE POINT-DISTINGUISHING CHROMATIC
INDEX OF COMPLETE BIPARTITE GRAPHS

MIRKO HORNAK*, NORMA ZAGAGLIA SALVI

Let G be a graph having no component K> and at most one com-
ponent K. The point-distinguishing chromatic index of G, in sym-
bol xo(G), is a smallest number of colours in a (not necessarily
proper) edge colouring of G such that any two distinct vertices of
G are distinguished by sets of colours of their incident edges.

It is immediately seen that xo(K1,,) = n for any n > 2.
Further, if m,n are integers, 2 < m < n, then xo(Kpm,n) >
[log, m] + 1. Let [p, g] be the interval of all integers z with p <
z < q. For positive integers k,m define

2m, if Kk <m,
dgf)::{Qm—l, ifk=m+1,
m, k>m+2

= 3 (1) -,
?

=0
= L)



where (¥) = 0 if k < . In what follows k, 1, m,n are integers with
2<m<n,l=/log,m] and k >1+1.

Theorem 1. If either m <9 or k > 20+2, then xo(Km,n) =
k& ne I,(,f).
Theorem 2. If k=1+1 and n € I¥, then xo(Kmn) = k.

If & € [+ 2,20+ 1], then the interval I,(,f ) decomposes into two

subintervals, the left one,
L) = [plk=1) L q 9k=1 _ gy [ —1],
and the right one,

R = [2F=1 —m — 1, b{M).

Theorem 3. If k € [I+2,21+1] andn € R, then xo(Km.n) =
k.
Proposition 4. If k € [l + 2,21+ 1] and n € LY, then
Xo(Km,n) € {k—1,k}.
Theorem 5. If m =10, k € [l + 2,2l + 1] and n € LY, then
Xo(Kmn) =k —1& (k,n) = (6,13).

In Theorem 5 we have [ = 4 and the unique “extremal” value
of kisk=6=10+2.
Open problem. Decide if there is a triple of integers
(k,m,n) such that m > 11, ke [l +3,21+1], n € 'Y and
XO(Km,n) =k-—1.
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SKEW-MORPHISM OF ABELIAN GROUPS
ROBERT JAJCAY

The concept of a skew-morphism is a generalization of the con-
cepts of a group automorphism and of an anti-automorphism (in-
troduced in the theory of regular Cayley maps). The existence of
certain skew-morphisms is known to be a necessary and sufficient
condition for embeddability of Cayley graphs into orientable surfa-
ces in the form of regular Cayley maps. Although skew-morphisms
possess many interesting algebraic properties, a general theory of
skew-morphisms of finite groups is far from reach. In our talk,
we shall present results on skew-morphisms of abelian groups - a
part of an ongoing effort to classify regular Cayley maps of abelian
groups. We will pay particular attention to a generalization of the
so-called antibalanced case (introduced by Sirdh and Skoviera) -
t-antibalanced Cayley maps.

DECOMPOSITIONS OF PLANAR GRAPHS
ToMmAS KAISER*, RISTE SKREKOVSKI

At the Czech—Slovak Graph Theory conference last year, J. Kra-
tochvil cited the following conjecture:

The vertices of any planar graph can be decomposed
into two sets inducing no cycle of length 3 or 4.

The conjecture has subsequently been proved by R. Skrekovski
and myself. I shall discuss several facts and open problems related
to this result and, more generally, to vertex decompositions of
planar graphs.
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G-MINIMAL REPRESENTATIVES
OF 3-MANIFOLDS OF GENUS 2

JAN KARABAS

One of the most interesting problems for 3-manifolds is the iso-
morphism problem. Since 70’s several methods to solve it were
developed. The method introduced in a paper of Ferri and Gag-
liardi is not easy to use, since no bound for the number of steps
in a computer representation is known. Some approximations of
solution was introduced in the paper of Grasselli, Mulazzani and
Nedela. The present method based on these approximations leads
to a simple algorithm finding representatives of the given equiva-
lence classes of 3-manifolds of genus two.

CROSSING GRAPHS
SANDI KLAVZAR*, HENRY MARTYN MULDER

Let G be an isometric subgraph of a hypercube—a partial cube.
Then its crossing graph G# is introduced as the graph whose ver-
tices are the equivalence classes of the Djokovié-Winkler relation
0. Equivalently, a vertex of G# corresponds to the class of edges
of G that in the embedding differ in a fixed position. Two vertices
of G# are adjacent if they cross on a common cycle.

It will be shown that every graph is the crossing graph of some
median graph. A partial cube G has a triangle-free crossing graph
if and only if G is a cube-free median graph. This result can be
used to characterize the partial cubes having a tree or a forest
as crossing graph. An expansion theorem for the partial cubes
with complete crossing graphs will also be mentioned. Cartesian
products will also be considered, in particular, G¥ is a complete
bipartite graph if and only if G is the Cartesian product of two
trees.

12



EVERY CUBIC GRAPH IS
STS(381)-COLOURABLE.

MIKE GRANNELL, TERRY GRIGGS,
MARTIN KNOR*, ) AND MARTIN SKOVIERA

A Steiner triple system on n points, ST'S(n), is a set of triples of
these points such that every pair is contained in a unique triple.
Colouring of a cubic graph by Steiner triple system is an assig-
nment of points of the system to the edges of a graph in such a
way, that triples of colours appearing at edges incident with one
vertex form a block (triple) of the system.

It is well-known that every cubic graph is 4-colourable. How-
ever, in colouring of edges of a cubic graph by four colours there is
plenty of freedom. Namely, if there are already assigned colours to
two edges incident with a given vertex, then there are two possi-
bilities for choosing the colour of the third edge. This is not the
case of colouring by Steiner triple system. As every pair of points
of Steiner triple system is contained in a unique triple, colours of
two edges incident with a given vertex determine the colour of the
third edge. Therefore, it is suprising that every bridgeless cubic
graph is colourable by every non-trivial STS(n), see [1]. Further,
if G is a cubic graph and S is a projective geometry, then G is
colourable by S if and only if G is bridgeless, see [1]. Hence, the si-
tuation is not clear for graphs with bridges. In the talk we present
an ST'S(381) such that every cubic graph is ST'S(381)-colourable.

D) Supported by VEGA grant 1/6293/99
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EDGE-DISJOINT ODD CYCLES IN PLANAR
GRAPHS

DANIEL KRAT*, HEINZ-JUERGEN V0SS

We prove 7,34(G) < 2v,4q(G) for each planar graph G where
Y6dd(G) is the maximum number of edge—disjoint odd cycles and
Todd(G) is the minimum number of edges whose removal makes G
to be bipartite, i.e. which meet all the odd cycles. This improves
a previous fast growing function of v, 44(G) bounding 7,44(G)
for planar graphs G due to Berge and Reed. For each k, there is a
3-connected planar graph G}, with 7,44(G) = 2k and v434(G) =
k, so the factor 2 is best possible. There exist graphs G in the
projective plane with 7, 34(G) arbitrary large and vyq4(G) = 1.

Our proof is based on the duality of linear programming. It
uses a well-known connection between the maximum cut problem
in planar graphs and the T-join problem explored by Hadlock
which led to a polynomial time algorithm for the maximum cut
problem for planar graphs.

SPANNING TREE FACTORIZATIONS OF
COMPLETE GRAPHS

MicHAEL KUBESA

We examine decompositions of complete graphs with an even num-
ber of vertices into isomorphic spanning trees. We develop a cyclic
factorization of K, into non-symmetric spanning trees. Our fac-
torization methods are based on flexible g-labeling and blended
p-labeling, introduced by Frondéek.

In this paper we present several infinite classes of non-sym-
metric trees, namely brooms and caterpillars with diameter 4,
which have flexible g-labeling or blended p-labeling. A caterpillar
is a tree in which each edge has at least one end-vertex in a single
path and a broom is a caterpillar, which contains a single star
joined to a path.

Supported by University of Minnesota Duluth grant 177-1009
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A NOTE ON THE THOMASSEN’S CONJECTURE
RoMAN KUZEL*, LIMING XIONG

The well-known Thomassen’s conjecture says that every 4-connec-
ted line graph contains a hamiltonian cycle. We show that this
conjecture is equivalent to the statement that every essentially
4-edge connected 3-regular graph has a dominating cycle which
contains any two prescribed disjoint edges (a dominating cycle in
G is a cycle C such that every edge of G has at least one vertex
on C).

ON LIGHT CYCLES IN FAMILIES OF PLANE
GRAPHS

TOMAS MADARAS

A connected graph H is said to be light in a class of graphs H if
there exists a positive integer ¢(H, H) such that each graph G € H
that contains an isomorphic copy of H contains also a subgraph
K isomorphic to H such that 3, cy (k) dega(v) < o(H,H). We
present various results concerning the existence of light cycles in
families of plane graphs of restricted minimum vertex degree or
minimum edge weight.

THE DISTANCE COLOURING OF REGULAR
TILINGS OF THE PLANE.

PETER JACKO, ANDREA MARCINOVA*

Let G be a multigraph. For any positive integer ¢, the t-distance
vertex (edge,face) chromatic number of G, in symbols x®(Q)
(th) (G), ng)(G)), is defined to be the minimum number of co-
lours required to colour the vertrices (edges, faces) of G so that
any two vertices (edges, faces) whose distance apart is < t receive
distinct colours. We present distance colouring results for three

regular tilings of the plane.
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DECOMPOSITIONS OF COMPLETE DIGRAPHS
INTO SELF-CONVERSE PARTS

MARIUSZ MESZKA*, ZDZISEAW SKUPIEN

Arc decompositions of the complete digraph DK, into ¢ isomor-
phic parts are considered. Moreover, in the case when a numerical
divisibility condition is not satisfied, two sets of nearly t** parts
are defined, namely the floor #** class | DK, /t|g := (DK, — R)/t
and the ceiling t*" class [DK,,/t]s := (DK, +S)/t, where R and S
are sets of arcs of the smallest possible cardinalities. We prove that
for every n and t there exist R and S such that both the floor and
ceiling classes contain self-converse digraphs and moreover these
nearly #** parts are oriented graphs (with two exceptions when
t =3 and n = 3,5). We also prove that DK, is decomposable
into nonhamiltonian directed paths whenever their lengths sum
up to n(n —1).

CRITERIA OF THE EXISTENCE OF UNIQUELY
PARTITIONABLE GRAPHS AND
COMBINATORIAL STRUCTURES.

PETER MIHOK*, IZAK BROERE AND JOZEF BUCKO

Let Py, Ps,..., P, be graph properties, a graph G is said to be
uniquely (P1, P2, ..., Py)-partitionable if there is exactly one (un-
ordered) partition {Vi,Va,...V,} of V(G) such that G[V;] € P;
for i = 1,2,...,n. We will show that for additive and induced-
hereditary properties of graphs uniquely (P1,Pa2,...,Py,)-parti-
tionable graphs exist if and only if P; and P; are either coprime
or equal irreducible properties of graphs for every i # j, i,j €
{1,2,...,n}.

Some generalization for hypergraphs, digraphs and other com-
binatorial structures will be presented.
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SIGNPOSTS IN A GRAPH
LADISLAV NEBESKY

Let G be a connected graph, and let d denote the distance function
of G. By a signpost in G we mean an ordered triple (u,v,w),
where u,v and w are vertices of G, u and v are adjacent, and w is
different from u. We say that a signpost (u',v',w') in G is geodetic
if dv',w'") = d(u',w') - 1.

Roughly speaking, a geodetic signpost (z,y, 2) in G shows the
direction of a shortest path, say P, from z to z; the direction of
P is determined by y. In a certain sense, every signpost (z',y’, z)
in G shows a ”direction” from z’ to z’.

The topic of this paper is looking for sets of signposts which
enable "reliable traveling” in G.

SOME REMARKS ON GENERALISATIONS OF
CAYLEY GRAPHS

RomMAN NEDELA

Several generalisations of the notion of Cayley graphs will be
discussed. We shall derive some combinatorial properties of the
considered classes of graphs. The results will be demostrated on
examples.

17



SENSE OF DIRECTION AND SHORTEST-PATH
ROUTING ON RANDOM REGULAR GRAPHS

MARTIN NEHEZ

A research of the sense of direction (SD) in the graph theory
is motivated by communication problems in distributed systems,
especially in point-to-point message-passing communication ne-
tworks. Study of SD is a part of the larger investigation on the
structural knowledge of distributed systems. Formal definitions
and related problems are contained in the survey of P. Flocchini,
B. Mans and N. Santoro, [ ”Sense of Direction in Distributed Com-
puting”, Proc. DISC’98, LNCS 1499, Springer-Verlag, pp. 1-15,
1998 ]. A simple and very natural example of SD is the compass
SD defined on two-dimensional tori T}, «, which allows four labels:
north, south, east and west. An important kind of SD was defined
by S. Dobrev in [ ”Yet Another Look at Structural Information”,
Proc. SIROCCO’98, Carleton Scientific, pp. 114-128, 1998 ]. It
is a group-based structural information (G-SI) on Cayley graphs
in which each edge (its port) has assigned the label of the corre-
sponding generator. (Cayley assignment of labels represents the
traditional labelling for a large class of Cayley graphs, including
rings, tori, hypercubes, e. t. c¢.) In several recent works (see the
survey of Flocchini, Mans and Santoro) there was shown that SD
has a positive impact on the complexity of several type of distri-
buted algorithms such as broadcasting, leader election, depth-first
traversal, spanning tree construction and minimum finding.

We study the impact of SD on the number of routing decisions
in this paper. We assume a A-regular point-to-point communi-
cation networks with crash faults such that their occurrence have
a probabilistic distribution. Such a network is modelled by a ran-
dom regular graph from a probability space G(A — reg, p), since p
is a constant probability of an edge (0 < p < 1). We consider the
Tajibnapis’ Netchange routing algorithm with complete routing
tables. A routing decision in a node is one access to the routing
table. We show that with respect to a given routing scheme, the
problem of determining the number of routing decisions along a
routing path according to the minimum-hop requirement is closely
related to the enumeration of a degree distribution in the proba-
bility space G(A — reg,p). We also compare the average number

18



of routing decisions for two class of graphs: random regular gra-
phs with degree A without SD and random k-dimensional tori
with G-SI, where 2k = A. For a k-dimensional torus T we define
the corresponding SD according to the Dobrev’s definition, since
Tk = Cay(ZE,{+e; | 0 <i < k—1}) and this SD is the same also
for the probability space G(T*, p).

For a graph G and for a destination vertex u € G, let us denote
the number of vertices in which at least one routing decision is
performed along a shortest routing path to the destination u as
rd(G,v). The following table contains the comparison of average
values rd(G,v) for regular random graphs without SD and for
random tori with G-SI relative to the order of a graph denoted by
N. (Note that for tori T it holds N = nk.)

A rd(G,u)/N, where k rd(T,u)/N, where
G € G(A —reg,1/2) T € G(Tk,1/2)
without SD with G-SI

3 0.125

4 0.313 2 0.188

) 0.5
6 0.656 3 0.438
7 0.773

8 0.855 4 0.645

9 0.910

10 0.945 ) 0.787

These results can be understood as the enumeration of the upper
bound on the number of routing decisions for a given fault-tolerant
network in average case. The determination of related nontrivial
lower bounds is still open.

The author thanks for a support to the VEGA grant No.
1/7152/20.
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EMBEDDING STEINER TRIPLE SYSTEMS
INTO STEINER SYSTEMS S(2,4,V)

ALEXANDER RoOsA*, MARIUSZ MESZKA

While embeddings of Steiner systems S(t, k,v) into Steiner sys-
tems S(t',k',v") have been widely considered, e.g. for t = t' =
2,k=k'"=3o0r4,and for t =t = 3,k = k' = 4, this seems not
to be the case when k < k'. We initiate a systematic study of em-
beddings of Steiner systems S(2,3,v) (i.e. Steiner triple systems)
into Steiner systems S(2,4,w). There are marked differences to
the previously studied cases. We settle the existence of embed-
dings of the unique ST'S(7), and, with one possible exception of
the unique ST'S(9), into Steiner systems S(2,4,w). We also ob-
tain bounds on embedding sizes of Steiner triple systems of other
small orders.
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FORBIDDEN SUBGRAPHS AND CLOSURE
CONCEPTS

ZDENEK RYJACEK

Let Xi,..., Xy be graphs. A graph G is X; ... Xy -free if G does
not contain a copy of any of the graphs X, ..., X} as an induced
subgraph. The graphs Xi,..., Xy are called forbidden subgraphs
in this context.

It is known [Bedrossian 1991; Faudree and Gould 1997] that
if X,Y is a pair of connected graphs, then, for any 2-connected
graph G, G being XY -free implies G is hamiltonian if and only if
X is the claw C' ~ K, 3 and Y belongs to a finite list of graphs,
one of them being the net N (the net N is the only connected
graph with degree sequence 333111). Similar characterizations of
pairs and triples of forbidden subgraphs for some other properties
are also known.

Let G be a claw-free graph and let cl(G) be its closure. Using a
characterization of all connected graphs A such that the class of all
C A-free graphs is stable under the closure operation (i.e., G being
C A-free implies cl(GQ) is C' A-free), we extend some known results
on hamiltonicity by characterizing classes of all exceptional gra-
phs. We then show that, although the classes of C' A-free graphs in
which 2-connectedness implies hamiltonicity (by the Bedrossian’s
characterization) are independent in general, this is not the case
for their closures. By introducing a strengthening of the closure
concept, we fully describe the structure of the (strong) closures of
graphs from these classes. Several open questions and problems
will be discussed.
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GRAPH EXPONENTIATION
ELISKA OCHODKOVA, VACLAV SNASEL*

We want to introduce a concept of graphic algebra, of hypercubes
and median graphs and exponentiation of graphs. We’ll show that
normal graphic algebra is a median graph and if every hypercube
is a median graph, then exponentiation of median graph is also
median graph. We want to show some necessary concepts and
prove proposition mentioned above.

Some concepts (without all necessary definitions, propositions
and proves):

Proposition 1: Every normal graphic algebra has a localizator.
Proposition 2: Let A be a simple graphic algebra, G is its graph.
When G has a finite diameter, then D¢ is the localizator of A.

Hypercubes are the simplest class of Cartesian products, they
are also known as r-cubes.

Definition 2: A median of triple of vertices u,v,w, of a graph
G is a vertex z that lies on a shortest u,v-path, on a shortest
u, w-path and on a shortest v, w-path.

Definition 3: A graph G is a median graph if every triple of
vertices of G has a unique median, namely if |I(u,v) N I(u,w) N
I(v,w)| = 1.

Proposition 3: Every hypercube is a median graph.

Definition 4: Let G and H be graphs. Then the vertex set of
the direct power G¥ is the set of all homomorphisms from H
into G. Two homomorphisms f,g € V(G*) are called adjacent if
[f(u),g(u) € E(G)] for all u € H.

Proposition 4: Graph of normal graphic algebra is a median
graph.

Theorem: Let G and H be median graphs. Then G¥ is median
graph.

22



CANTANKEROUS MAPS
JozEF SIRAN

Cantankerous regular maps are surface embeddings of graphs with
doubled edges, such that the automorphism group of the embed-
ding acts regularly on flags, and where each doubled edge is a
centre of a Mobius band on the surface. We present an abstract
characterisation of cantankerous maps and apply it to description
of all such maps that have automorphism group isomorphic to
PSLs(q); other simple groups will be discussed in this connection
as well. In the case of valence 6 we exhibit an interesting corre-
spondence between cantankerous maps and 3-arc-transitive cubic
graphs.

COMPUTING GRAPH INVARIANTS
ON ROTAGRAPHS USING DYNAMIC
ALGORITHM APPROACH: THE CASE

OF DOMINATION NUMBERS

ALEKSANDER VESEL

Rotagraphs generalize all standard products of graphs in which
one factor is a cycle. A computer based approach for searching
graph invariants on rotagraphs has been proposed in [1]. The main
idea of the approach is to build a function (an invariant) on a ro-
tagraph from corresponding functions on its basic building blocks.
Then the problem reduces to a search for a certain subgraph in an
associated directed graph. In particular, if the function in question
is local and hereditary, one has to look for directed cycles.

We will show that in certain cases the approach can be used for
the functions which are not hereditary as well. Moreover, we will
give some new results on the domination numbers of the Cartesian
products of two cycles.

References
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DOMINATION IN INFINITE GRAPHS
BOHDAN ZELINKA

Let G be a finite undirected graph with the vertex set V(G),
let V' be a subset of the set R of all real numbers. Let f be a
mapping of V(G) into Y. If f(N[v]) > 1 for each v V(G), where
f(Nv]) is the sum of values f(z) over all vertices z from the
closed neighbourhoood NJv] of v; then f is called a Y-dominating
function on G.

A Y-dominating function for Y = {0,1} is called a domina-
ting function, for Y = {—1,1} a signed dominating function, for
Y = {-1,0,1} a minus dominating function These concepts are
described in [1].

In this communication, whenever it is possible, the mentioned
concepts are transferred to the case of infinite graphs and their
properties are studied.
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