CSGT 2014, June 9-13 2014, Teplice nad Bečvou
49th Czech-Slovak Conference on Graph Theory 2014
Department of Applied Mathematics
VŠB - Technical University Ostrava, 17. listopadu 15, Ostrava-Poruba

CAYLEY GRAPHS OF DIAMETER TWO AND OF ORDER $\frac{d^{2}}{2}$

Marcel Abas

The number of vertices of a graph of diameter two and maximum degree d is at most $d^{2}+1$. This number is the Moore bound for diameter two. The order of largest Cayley graphs of diameter two and degree d is denoted by $C(d, 2)$. The only known construction of Cayley graphs of diameter 2 valid for all degrees d gives $C(d, 2)>\frac{1}{4} d^{2}+d$. However, there is a construction yielding Cayley graphs of diameter 2, degree d and order $d^{2}-O\left(d^{\frac{3}{2}}\right)$ for an infinite set of degrees d of a special type.In our talk we present a construction giving $C(d, 2) \geq \frac{1}{2} d^{2}-k$ for d even and of order $C(d, 2) \frac{1}{2}\left(d^{2}+d\right)-k$ for d odd, $0 \leq k \leq 8$. In addition, we show that, in asymptotic sense, the most of record Cayley graphs of diameter two are obtained by our construction.

