CSGT 2014, June 9-13 2014, Teplice nad Bečvou
49th Czech-Slovak Conference on Graph Theory 2014
Department of Applied Mathematics
VŠB - Technical University Ostrava, 17. listopadu 15, Ostrava-Poruba

DESCRIBING 3-PATHS IN PLANE GRAPHS OF GIVEN GIRTH

Stanislav Jendrol', Mária Kubíkoví*

The girth of a graph is the length of a shortest cycle in the graph. A path on three vertices u, v, and w is an (i, j, k)-path if $\operatorname{deg}(u) \leq i, \operatorname{deg}(v) \leq j$, and $\operatorname{deg}(w) \leq k$.
The motivation for our research has come from the following results. Already in 1922 Franklin proved that every normal plane map G of minimum degree five contains a $(6,5,6)$-path. In 1993 Ando, Iwasaki and Kaneko showed that every 3-polytope contains a 3-path such that the sum of degrees of vertices of this path is at most 21. Jendrol' extended this result and described the types of 3 -paths contained in each 3-polytope. In 2013 Borodin described the 3-paths in normal plane maps without two adjacent 3 -vertices lying in two common 3 -faces.
In this talk we consider simple plane graphs with minimum degree at least two and girth at least five. We describe the structure of the 3 -paths in such graphs.

