

WIENER INDEX OF ITERATED LINE GRAPHS OF TREES

Martin Knor*, Riste Škrekovski, Primož Potočnik, Martin $${\rm Mačaj}$$

Let G be a graph. Its Wiener index, W(G), is the sum of all distances in G. Iterated line graph $L^i(G)$ is defined recursively by $L^i(G) = L(L^{i-1}(G))$ for $i \ge 1$, while $L^0(G) = G$. Let T denote a tree. It is known that $W(L(T)) \ne W(T)$ if T is non-trivial, but $W(L^2(T)) = W(T)$ has infinitely many solutions. Dobrynin and Melnikov conjectured that in the class of trees $W(L^i(T)) = W(T)$ has no solution for $i \ge 3$. In a series of papers we disprove this conjecture and we completely characterize all the solutions. We also include some remarks about $W(L^2(T)) = W(T)$.