CSGT 2014, June 9-13 2014, Teplice nad Bečvou
49th Czech-Slovak Conference on Graph Theory 2014
Department of Applied Mathematics
VŠB - Technical University Ostrava, 17. listopadu 15, Ostrava-Poruba

FORBIDDEN SUBGRAPHS AND RAINBOW CONNECTION IN GRAPHS WITH MINIMUM DEGREE 2

Petr Vrána*, Přemysl Holub, Zdeněk Ryjáček, Ingo
Schiermeyer

A connected edge-colored graph G is rainbow-connected if any two distinct vertices of G are connected by a path whose edges have pairwise distinct colors; the rainbow connection number $\mathrm{rc}(G)$ of G is the minimum number of colors such that G is rainbow-connected.
We consider families \mathcal{F} of connected graphs for which there is a constant $k_{\mathcal{F}}$ such that, for every connected \mathcal{F}-free graph G with minimum degree 2, $\operatorname{rc}(G) \leq \operatorname{diam}(G)+k_{\mathcal{F}}$, where $\operatorname{diam}(G)$ is the diameter of G. We show that condition holds for the families $\mathcal{F}_{1}=\left\{Z_{3}, S_{3,3,3}\right\}, \mathcal{F}_{2}=\left\{S_{2,2,2}, N_{2,2,2}\right\}$.

